Optimal Worst-Case Pricing for a Logit Demand Model with Network Effects

Chenhao Du  William L. Cooper  Zizhuo Wang

Department of Industrial and Systems Engineering
University of Minnesota
111 Church Street SE
Minneapolis, MN 55455, USA

July 24, 2017

Abstract

We consider optimal pricing problems for a product that experiences network effects. Given a price, the sales quantity of the product arises as an equilibrium, which may not be unique. In contrast to previous studies that take a best-case view when there are multiple equilibrium sales quantities, we maximize the seller’s revenue assuming that the worst-case equilibrium quantity will arise in response to a chosen price. We compare the best- and worst-case solutions, and provide asymptotic analysis of revenues.

Keywords: Pricing, Choice Model, Network Effect, Revenue Management

Email: duxx181@umn.edu, billcoop@umn.edu, zwang@umn.edu; Corresponding Author: Cooper
1 Introduction

A product exhibits network effects if each individual customer’s valuation for the product increases in its overall sales. For example, an online multi-player video game may be more exciting and yield greater value to an individual player when there are more total players. Given a price, the sales level of a product with network effects may arise from an equilibrium condition. If that condition admits multiple solutions, then for a given price, there may be one equilibrium with a high sales level and another with a low sales level. If this is the case, then sales revenues at those two equilibria will differ. In this paper, we study how this may affect a seller’s pricing decision for a single product.

Our starting point is a multinomial logit (MNL) choice model where each customer picks between buying the product and not buying the product. A textbook treatment of the MNL model can be found in, e.g., [1]. The MNL model may be viewed as a random utility maximization model, where each customer’s utility for a product is comprised of an expected-utility term and a random term. We incorporate network effects by modifying the expected-utility term to depend upon sales. With this, customer choice probabilities depend upon sales, and the sales equilibria described above arise as fixed points of the function that, given a price, maps sales levels to choice probabilities.

We are interested in “worst-case” settings where the lowest possible sales equilibrium arises in response to an implemented price. The questions we address are as follows. (i) What is the seller’s optimal price in such a setting and how does it compare to that in a “best-case” setting where the best possible sales equilibrium arises in response to a price? (ii) What happens if the seller prices in expectation of a best-case equilibrium but the worst-case equilibrium arises? Conversely, what if the seller prices in expectation of a worst-case equilibrium but the best-case equilibrium arises? (iii) How do revenues in these various scenarios depend upon the strength of the network effect?

We show that the worst-case pricing problem can be solved via a one-dimensional optimization problem with a unimodal objective function. The optimization problem also provides a link between the best- and worst-case formulations, from which we find that the two formulations have the same solution if the network effect is weak but different solutions if the network effect is strong. (In our framework, the “strength” of the network effect depends upon a parameter that governs the extent to which sales affect an individual’s expected utility for the product.) In settings where the best- and worst-case problems yield different answers, we find that in the best-case problem the seller sets a higher price and obtains a lower sales level (and, of course, higher revenue) than in the worst-case problem. The difference in revenues in the two cases can be large. In fact, in settings
with very strong network effects, we prove that the best-case revenue is roughly proportional to the
parameter mentioned above, while the worst-case revenue is roughly proportional to its logarithm.

If the seller is “misguidedly optimistic” and sets the price prescribed by the solution of the
best-case formulation, but (contrary to the assumption underlying that formulation) the worst-
case equilibrium for that price prevails, then the realized revenue may be below what the solution
to the best-case formulation suggested it would be and also below what it would have been if the
seller had instead implemented the worst-case pricing solution. With a weak network effect, such an
issue does not arise because the two formulations have the same solution. However, if the network
effect is strong, then the phenomenon is quite pronounced. We prove that the revenue under
misguided optimism is roughly proportional to the reciprocal of an expression that is exponential
in the parameter that determines the strength of the network effect. Thus, a misguided optimist
seller’s revenue is almost zero in such settings. If the seller is instead “incorrectly pessimistic” and
sets the price prescribed by the solution of the worst-case problem in a setting where the best
equilibrium prevails, then a related phenomenon occurs. It turns out that the price obtained from
the worst-case formulation yields a unique equilibrium. Nevertheless, in such settings the seller
would be better off using the best-case price.

To close this section, we provide a very short literature review. The MNL model and its variants
have been widely used in the revenue management literature for problems without network effects.
For examples and references, see [4, 6, 7, 9, 10, 11]. To draw distinctions with our work, these papers
do not consider network effects, and hence do not need to consider (multiple) sales equilibria.

The papers [5] and [12] use the MNL model — modified as described above — in pricing and
assortment planning problems with network effects. Both of these papers contain some results
regarding (non-)uniqueness of equilibria, but neither focuses on the issue from a decision-making
standpoint. Other research that considers MNL models with network effects includes [2], [8], and
Section 7.8 of [1]. These studies address the possibility of multiple equilibria, but their focus is
quite different from ours. For additional pointers to the literature on network effects, see [5, 12].

The presence of multiple sales equilibria that yield different revenues for the seller is analogous
to a situation that may arise in Stackelberg games, and more generally, in bilevel programming
problems. In such games, the follower may have a non-unique best response to the leader’s action
and the payoff to the leader may depend upon which of those responses is chosen by the follower.
This issue may be addressed with “optimistic” and “pessimistic” formulations akin to the best-case
and worst-case approaches considered herein. For entry into this literature, see [3].
2 The Model

Consider a seller who must set the price \( p \) for a single product. Demand is given by a standard logit model, modified to incorporate network effects. To begin, we describe this demand model, which is the same as the one in [5] specialized to a single product. Each individual customer has a valuation \( U = v + \epsilon \) for the product where \( v \) is constant (given the price) across the population of customers and \( \epsilon \) varies across the population of customers. We assume \( v = y - p + \alpha q \), where \( y \geq 0 \) is a constant that depends upon intrinsic properties of the product, \( q \) is the sales quantity of the product, and \( \alpha \geq 0 \) is a network effect sensitivity parameter. The value a customer gets from the product is increasing in \( q \). We may view \( \alpha \) as reflecting the strength of the network effect. If \( \alpha \) is large, then a customer’s valuation is quite sensitive to sales \( q \), and the network effect is strong. If \( \alpha \) is small, then a customer’s valuation is less sensitive to \( q \), and the network effect is weak.

Upon defining \( v_0 = 0 \), we also assume that each individual customer has a valuation \( U_0 = v_0 + \epsilon_0 \) for the no-purchase option (i.e., for not buying the product) and that \( \epsilon_0 \) varies across the population of customers. Each customer observes how much (s)he values the product and how much (s)he values the no-purchase option, and then picks the option with the larger value.

We consider a “fluid model” of demand, and with no loss of generality, scale the size of the population of customers to 1. In such a fluid model, the fraction of customers whose \( \epsilon \) and \( \epsilon_0 \) are in any particular range (and, in view of the assumption of a population of size 1, also the number of customers whose \( \epsilon \) and \( \epsilon_0 \) are in that range) is the same as the probability that the \( \epsilon \) and \( \epsilon_0 \) of an individual customer are in that range. As in the usual logit model, we assume \( \epsilon \) and \( \epsilon_0 \) are independent Gumbel random variables for each customer. It follows from standard results for the MNL model that the probability a typical customer will buy the product when the price is \( p \) is

\[
P(U > U_0) = \frac{\exp(v)}{1 + \exp(v)} = \frac{\exp(y - p + \alpha q)}{1 + \exp(y - p + \alpha q)} =: F(p, q) .
\]

From our assumption of a fluid model with a population of size 1, we have \( q = P(U > U_0) \). Thus,

\[ q = F(p, q) . \]

The seller wishes to maximize its revenue \( \pi(p, q) = pq \). The seller implements price \( p \), and the market responds with sales quantity \( q \) that satisfies (1). The heart of the issue we address is that for a given price \( p \), it is possible that there are multiple quantities that satisfy (1) and the associated revenues may differ greatly. That is, for given \( p \), it is possible that there are \( q \neq q' \) such that \( q = F(p, q) \) and \( q' = F(p, q') \) with (say) \( \pi(p, q) \gg \pi(p, q') \). See [5] for an optimistic (best-case)
approach where the revenue maximization problem is solved while implicitly assuming that for any price \( p \), the sales quantity that arises is the one with the highest revenue among those that satisfy (1). Herein, we mainly focus on a pessimistic (worst-case) setting in which for any price \( p \), the sales quantity that arises is the one with the lowest revenue among those that satisfy (1).

For price \( p \), define \( Q(p) \) to be the set of \( q \) that satisfy (1), i.e., \( Q(p) = \{ q \in [0, 1] : q = F(p, q) \} \).

With this, we can restate (1) as follows:

\[
q \in Q(p).
\]  

(2)

We can now present the best-case and worst-case pricing problems. The best-case pricing problem (in essence studied in [5]) is

\[
\pi = \sup_p \pi(p) \quad \text{(BC)}
\]

\[
\pi(p) = \max_q \{ \pi(p, q) : q \in Q(p) \}.
\]

Likewise, the worst-case pricing problem (the main topic of this paper) is

\[
\bar{\pi} = \sup_p \bar{\pi}(p) \quad \text{(WC)}
\]

\[
\bar{\pi}(p) = \min_q \{ \pi(p, q) : q \in Q(p) \}.
\]

Lemma 3.1 below establishes that \( Q(p) \) is finite for each \( p \). Hence, the maximum over \( q \) in (BC) and the minimum over \( q \) in (WC) are both attained. As we will see later, there may be no optimal solution to \( \sup_p \bar{\pi}(p) \) in (WC). In such cases, we must be satisfied with an \( \epsilon \)-optimal solution, say \( p^\epsilon \), wherein \( \bar{\pi}(p^\epsilon) > \sup_p \bar{\pi}(p) - \epsilon \).

3 Preliminary Analysis

In this section, we provide insight into when multiple sales equilibria exist, and also outline an approach from [5] to solve the best-case problem. The approach will also be an ingredient in our procedure for solving the worst-case problem. To begin, for \( q \in (0, 1) \) let

\[
p(q) = y + \alpha q - \log q + \log(1 - q).
\]  

(3)

For any given sales quantity \( q \in (0, 1) \), some algebra shows that \( p = p(q) \) is the unique price for which (2) holds. For \( q \in (0, 1) \), we have that \( q \in Q(p) \) if and only if \( p(q) = p \). This does not preclude the existence of some other value (say \( q' \)) such that \( p(q) \) and \( q' \) also together satisfy (2).
Figure 1: The function $p(q)$ for $\alpha = 6, y = 1$.

Figure 1 plots $p(q)$. (The points BC, WC, and MO are explained later.) The $(p, q)$-pairs that satisfy (2) are simply the points in two-dimensional space on the graph of $p(q)$. Therefore, we can determine the number of sales equilibria for a given price $p$ by counting the number of times a horizontal line at height $p$ intersects $p(q)$. If $p$ is between $p^L$ and $p^H$ in the figure, then there are three $q$ that satisfy (2). The best-case approach assumes sales will be the largest of these three values. If sales instead turn out to be the smallest of the three (which would be consistent with the worst-case assumption), then sales — and revenue — will be much lower. For example, in Figure 1, if the price is $\tilde{p}$ (which, in this example, is the optimal price in (BC)), then the largest sales quantity that could arise is $\tilde{q} \approx 0.90$, while the smallest that could arise is $q^\downarrow \approx 0.05$.

The following lemma describes the structure of $p(q)$. In the interest of space, we omit the proof, which follows from (3) and simple calculus.

**Lemma 3.1.** The function $p(q)$ defined in (3) satisfies $\lim_{q \downarrow 0} p(q) = \infty$ and $\lim_{q \uparrow 1} p(q) = -\infty$. In addition, we have the following.

1. Suppose $\alpha \leq 4$. Then $p(q)$ is decreasing, and for each $p$, there is a unique $q$ that satisfies (2).

2. Suppose $\alpha > 4$. Then $p(q)$ has a unique local minimum at $q^L = 1/2 - \sqrt{1/4 - 1/\alpha}$ and a unique local maximum at $q^H = 1/2 + \sqrt{1/4 - 1/\alpha}$. Also, $p(q)$ decreases on $(0, q^L]$, increases
on \((q^L, q^H]\), and decreases on \((q^H, 1]\). For \(p^L := p(q^L)\) and \(p^H := p(q^H)\) we have:

(a) for each \(p \in (p^L, p^H)\), there are three \(q\) that satisfy (2);
(b) for each \(p \in \{p^L, p^H\}\), there are two \(q\) that satisfy (2);
(c) for each \(p \notin [p^L, p^H]\), there is a unique \(q\) that satisfies (2).

Lemma 3.1 implies that multiple equilibria may arise only if network effects are strong enough \((\alpha > 4)\). In settings with weak network effects \((\alpha \leq 4)\), problems (BC) and (WC) are equivalent, because for each price, there is a unique equilibrium. Problem (BC) was already solved in [5]. Hence, we hereafter assume \(\alpha > 4\).

We close this section with an approach for solving (BC). Define

\[
\tilde{\pi}(q) = p(q)q = yq + \alpha q^2 - q \log(q) + q \log(1 - q),
\]

(4)

and consider the maximization problem

\[
\tilde{\pi}^* = \max_q \{\tilde{\pi}(q) : 0 < q < 1\}.
\]

(P0)

We can summarize our results for (BC) with the following.

**Proposition 3.2.** Problems (BC) and (P0) are equivalent; i.e, \(\pi = \tilde{\pi}^*\). There is a unique solution \((\overline{p}, \overline{q})\) to (BC), there is a unique solution \(\tilde{q}\) to (P0), and \((\overline{p}, \overline{q}) = (p(\tilde{q}), \tilde{q})\). In addition, \(\tilde{q} > q^H\).

Proofs of this and subsequent results are in Section 5. The essence of the above proposition is that to solve (BC), it suffices to solve the single-dimensional optimization problem (P0) where the decision variable is the quantity. Lemma 5.1 of Section 5 establishes that \(\tilde{\pi}(q)\) is strictly unimodal. Thus, the unique maximizer \(\tilde{q}\) of \(\tilde{\pi}(q)\) can be found efficiently through a bisection search.

## 4 Main Results

In this section we solve (WC), and make comparisons with (BC). We then consider what happens if the seller has an incorrect belief about which equilibrium will prevail, and study how the strength of the network effect, as measured by \(\alpha\), affects the seller’s revenue in different scenarios.

Define \(q^M\) to be the larger of the two sales quantities \(q\) for which \((p^L, q)\) satisfies (2); see part 2(b) of Lemma 3.1 and Figure 1. Observe that we have \(q^M > q^H > q^L\) and \(p(q^M) = p(q^L) = p^L\). The following, which describes the solution to (WC), is our first main result.
Theorem 4.1.

1. If $\bar{q} > q^M$, then the unique optimal solution $(p, q)$ to (WC) is given by $(p, q) = (p(\bar{q}), \bar{q})$.
   Moreover, $\bar{\pi} = p \cdot \bar{q} = p(\bar{q})\bar{q}$.

2. If $\bar{q} \leq q^M$, then there does not exist an optimal solution to (WC). For any $\epsilon \in (0, p^L]$, we have that $(p^\epsilon, q^\epsilon) := (p^L - \epsilon, q^M + \delta(\epsilon))$ is an $\epsilon$-optimal solution to (WC), where $\delta(\epsilon) > 0$ is the unique solution to $p(q^M + \delta) = p^L - \epsilon$. Moreover, $\bar{\pi} = p^L \cdot q^M$.

Proposition 3.2 and Theorem 4.1 reveal a simple relationship between the best- and worst-case problems. If the optimal solution $\bar{q}$ to (P0) is larger than $q^M$, then the two problems have the same solution. On the other hand, if $\bar{q}$ is less than $q^M$, then an optimistic seller will charge more than will a pessimistic seller, and the optimistic seller will expect to obtain a lower sales quantity but higher revenue than will the pessimistic seller. An example with $\bar{q} < q^M$ is depicted in Figure 1. The points labeled BC and WC correspond to the $(p, q)$-pairs obtained from problems (BC) and (WC).

![Figure 2: Comparison of revenues (y = 1).](image)

Figure 2 shows how $\bar{\pi}$ and $\bar{\pi}^\dagger$ vary with the parameter $\alpha$, which measures the strength of the network effect. For small $\alpha$, we have $\bar{\pi} = \bar{\pi}^\dagger$. This can be explained by the fact that for such $\alpha$ we have $\bar{q} > q^M$ as in part 1 of Theorem 4.1. On the other hand, $\bar{\pi} > \bar{\pi}^\dagger$ for large $\alpha$. For
such $\alpha$, we have $\bar{q} \leq q^M$ as in part 2 of the theorem. (These statements about the relationship between $\bar{q}$ and $q^M$ are proved in Lemma 5.4.) As $\alpha$ increases, both $\bar{\pi}$ and $\bar{\pi}$ increase because, all else equal, customers value the product more. In both the best and worst cases, larger values of $\alpha$ allow the seller to charge more and also generate higher sales. The figure suggests that $\bar{\pi}$ grows more rapidly than $\bar{\pi}$. In fact, $\bar{\pi}$ is asymptotically proportional to $\alpha$ while $\bar{\pi}$ is asymptotically proportional to $\log \alpha$. This is made precise in the next theorem. In preparation, recall that $f(\alpha) \sim g(\alpha)$ as $\alpha \to \infty$ means $\lim_{\alpha \to \infty} f(\alpha)/g(\alpha) = 1$. Similarly, $f(\alpha) = \Theta(g(\alpha))$ as $\alpha \to \infty$ means $C_1 \leq \liminf_{\alpha \to \infty} f(\alpha)/g(\alpha) \leq \limsup_{\alpha \to \infty} f(\alpha)/g(\alpha) \leq C_2$ for some constants $C_1, C_2 > 0$.

**Theorem 4.2.** (i) $\bar{\pi} \sim \alpha$ and (ii) $\bar{\pi} \sim \log \alpha$ as $\alpha \to \infty$.

It is easy to see from the expression for $q^H$ in Lemma 3.1 that $q^H \to 1$ as $\alpha \to \infty$. In addition, $q^H < \bar{q} < 1$ by Proposition 3.2. Moreover, $q^H < q^M < 1$. Hence $\bar{q} \to 1$ and $q^M \to 1$ as $\alpha \to \infty$. It follows that the large asymptotic difference between $\bar{\pi}$ and $\bar{\pi}$ derives from the fact that the seller charges a much higher price in (BC) than in (WC) while obtaining almost the same sales level.

To close this section, we address the question: what happens if the seller is “misguidedly optimistic” and solves (BC), but upon implementing the prescribed price, the worst corresponding sales quantity arises? We may similarly ask what if the seller is “incorrectly pessimistic” and sets the price obtained from solving (WC), but the best corresponding sales quantity arises?

We start with the simpler case of incorrect pessimism. Suppose that for any given price, the best equilibrium sales level will actually prevail, but that the seller believes incorrectly that the worst equilibrium will prevail. Let $q^\dagger = \max\{q : q \in Q(p)\}$ be the largest sales quantity that can arise from the worst-case price $p$. The incorrectly pessimistic seller implements price $p$ and subsequently the sales level $q^\dagger$ arises. The seller obtains revenue $\pi^\dagger := \pi(p) = p \cdot q^\dagger$. In case of non-existence of $p$ as in part 2 of Theorem 4.1, we here take $p = \lim_{\epsilon \to 0} p^\epsilon$. We know that $p$ is set to $p(\bar{q})$ if $\bar{q} > q^M$, and otherwise $p$ is set “infinitesimally” below $p(q^M)$ if $\bar{q} \leq q^M$. In either case, there is a unique corresponding sales level; see Lemma 3.1 and Figure 1. Hence, the actual sales level will not differ from that predicted by the solution to (WC), and the seller will not realize it was incorrect in its pessimism and will obtain revenue $\bar{\pi}$. That is, $\pi^\dagger = \bar{\pi}$. Thus, the “cost” of incorrect pessimism to the seller (i.e., the loss in comparison to what it could have earned with a correct belief) is $\bar{\pi} - \pi^\dagger = \bar{\pi} - \bar{\pi}$. Note that $\bar{\pi} - \bar{\pi}$ is 0 if $\bar{q} \geq q^M$ and is positive otherwise.

Next we turn to the case of misguided optimism. Suppose that for any given price, the worst equilibrium sales level will actually prevail, but the seller believes incorrectly that the best equilibrium will prevail. Let $q^\dagger = \min\{q : q \in Q(\pi)\}$ be the smallest sales quantity that can arise from
the best-case price $\bar{p}$. The misguidedly optimistic seller implements price $\bar{p}$ and subsequently the sales level $q^\dagger$ arises. The seller obtains revenue $\pi^\dagger := \pi(\bar{p}) = \bar{p} \cdot q^\dagger$. If $\bar{q} > q^M$, then $\bar{p} = \bar{p} = p(\bar{q})$ and $q^\dagger = q = \bar{q}$. Hence, $\pi^\dagger = \bar{\pi} = \pi$, and the cost of misguided optimism $\bar{\pi} - \pi^\dagger$ is 0. On the other hand, if $\bar{q} \leq q^M$ (so $\bar{q} \in (q^H, q^M]$), then an appeal to Lemma 3.1 and Figure 1 shows that $\bar{p} = p(\bar{q}) \in [p^L, p^H]$ and $q^\dagger \leq q^L < q^H < \bar{q} = \bar{q}$. So, $q^\dagger$ will be smaller than $\bar{q}$. Consequently, if $\bar{q} \leq q^M$, then $\pi^\dagger = p(\bar{q}) \cdot q^\dagger$ and the cost of misguided optimism is $\bar{\pi} - \pi^\dagger = p^L \cdot q^M - p(\bar{q}) \cdot q^\dagger$.

Figure 1 shows an example for which $\bar{q} \in (q^H, q^M]$. In the figure the $(p, q)$-pair corresponding to misguided optimism is labeled MO. As indicated above, the solution in the case of incorrect pessimism is the same as WC. The figure shows that the sales quantity ($q^\dagger \approx 0.05$) obtained in the case of misguided optimism is quite low in comparison to that obtained in both the best-case and worst-case solutions. To help understand the effect misguided optimism has on revenues, Figure 2 plots $\pi^\dagger$ against the network effect parameter $\alpha$. Observe that there is a discontinuity in $\pi^\dagger$ at $\alpha \approx 4.8$. This discontinuity arises at the value of $\alpha$ where $\bar{q}$ moves from above $q^M$ to below $q^M$. When this happens, $q^\dagger$ shifts from coinciding with $\bar{q}$ to being much smaller than $q^L$. The figure shows that for small $\alpha$ (weak network effect), $\pi^\dagger$ coincides with $\bar{\pi}$ and $\bar{\pi}$, consistent with the discussion above. For large $\alpha$, however, $\pi^\dagger$ is roughly zero. This can be traced to very low quantities that arise in the case of misguided optimism when $\alpha$ is not small. In fact, the figure suggests that $\pi^\dagger$, when viewed as a function of $\alpha$, approaches 0 quickly as $\alpha$ grows. This is made precise in Theorem 4.3, which shows that $\pi^\dagger$ converges to 0 at a rate that is exponential in $\alpha$.

**Theorem 4.3.** $\pi^\dagger = \Theta(e^{-\alpha^2})$ as $\alpha \to \infty$.

When deciding whether to use (BC) or (WC), a seller may combine Theorems 4.2 and 4.3 to make rough comparisons of the absolute and relative costs of incorrect pessimism and misguided optimism. A seller may also be conservative and simply wish to avoid very low revenues, which would lead it to (WC). In the end, any such decision depends upon the judgement of the seller.

## 5 Proofs and Auxiliary Results

**Proof of Proposition 3.2.** For each $p$ we have that (i) for $q \in (0, 1)$ we have $q \in Q(p)$ if and only if $p(q) = p$, and (ii) $0, 1 \notin Q(p)$. Therefore, for each $p$ we have $\max_q \{\pi(p, q) : q \in Q(p)\} = \max_{q \in (0,1)} \{pq : p(q) = p\}$.

Lemma 5.1 below establishes that there is a unique optimal solution $\bar{q}$ to (P0) and that $\bar{q} > q^H$. We next show that $(p(\bar{q}), \bar{q})$ is an optimal solution (BC). For arbitrary price $p$, let $q^\dagger(p)$ be the...
unique maximizer in the problem $\max_q \{pq : p(q) = p\}$. That is, $q^\dagger(p)$ is the largest $q$ such that $p(q) = p$. We have that $q^\dagger(p)$ satisfies $p(q^\dagger(p)) = p$. Therefore,

$$\max_q \{pq : p(q) = p\} = pq^\dagger(p) = p(q^\dagger(p))q^\dagger(p) \leq p(q)\tilde{q}$$

where the inequality holds because $\tilde{q}$ maximizes $p(q)q$. For $p = p(\tilde{q})$, it is apparent that $q^\dagger(p(\tilde{q})) = \tilde{q}$, and the weak inequality in (5) becomes an equality. Thus, $(p(\tilde{q}), \tilde{q})$ is an optimal solution to (BC).

For uniqueness of the optimal solution to (BC), consider any price $p \neq p(\tilde{q})$. Then the inequality in (5) must be strict, or else we would get a contradiction that $\tilde{q}$ is the unique maximizer of $p(q)q$. □

**Proof of Theorem 4.1.** Let $q^\dagger(p) = \min\{q : q \in Q(p)\}$. We may write (WC) as $\underline{\pi} = \sup_p pq^\dagger(p) = \max\{A_1, A_2\}$ where $A_1 = \sup_p \{pq^\dagger(p) : p \in (0, p^L)\}$ and $A_2 = \sup_p \{pq^\dagger(p) : p \in [p^L, \infty)\}$. By Lemma 3.1, we have that $A_1 = \sup_q \{\pi(q) : q \in (q^M, 1)\}$ and $A_2 = \sup_q \{\pi(q) : q \in (0, q^L)\}$. Lemma 5.1 implies $\pi(q)$ is increasing on $(0, q^L]$. So, $A_2 = \pi(q^L)$. Note also that $\pi(q^L) = p(q^L)q^L = p(q^M)q^L < p(q^M)q^M = \pi(q^M) = \lim_{q \downarrow 0} \pi(q^M + \epsilon)$. Hence, $A_2 < A_1$, and consequently, $\underline{\pi} = A_1$.

If the maximizer $\tilde{q}$ of $\pi(q)$ over $(0, 1)$ lies in $(q^M, 1)$, then $\bar{\pi} = p(\tilde{q})\tilde{q}$ and the optimal solution to (WC) is $(\underline{\pi}, q^\dagger)$. By Lemma 5.1, the other possibility is that $\tilde{q}$ lies in $(q^H, q^M]$. In this case, again by Lemma 5.1 (unimodality of $\pi(q)$), we have $\bar{\pi} = \pi(q^M) = p(q^M)q^M = p^L \cdot q^M$.

Here, the supremum in (WC) and $A_1$ is not attained, but an $\epsilon$-optimal solution is given by $(\underline{\pi}, q^\epsilon)$. To see this, note that the set $Q(q^\epsilon)$ is the singleton $\{q^\epsilon\}$ because $p^\epsilon < p^L$. Moreover, $\bar{\pi}(p^\epsilon) - \bar{\pi} = p^\epsilon \cdot q^\epsilon - p^L \cdot q^M = (p^L - \epsilon)(q^M + \delta) - p^L \cdot q^M \geq (p^L - \epsilon)q^M - p^L \cdot q^M > -\epsilon$. □

**Lemma 5.1.** Suppose $\alpha > 4$. Then $\pi(q)$ is a strictly unimodal function on $(0, 1)$ with a unique maximizer $\tilde{q} \in (0, 1)$. In addition, $\tilde{q} > q^H$.

**Proof.** The first and second derivatives of $\pi(q)$ are

$$\pi'(q) = y + 2\alpha q - \log(q) + \log(1 - q) - \frac{1}{1 - q},$$

$$\pi''(q) = 2\alpha - \frac{1}{q(1 - q)^2}.$$  

(6)  

(7)

To prove the lemma it suffices to show (i) $\pi''(q) < 0$ for $q \in (q^H, 1)$, (ii) $\pi'(q) > 0$ for $q \in (0, q^H)$, and (iii) $\lim_{q \uparrow 1} \pi'(q) = -\infty$. Item (iii) follows easily from (6), so we need only establish (i) and (ii).

We begin with (i). Note that $g(q) := \frac{1}{q(1 - q)^2}$ is decreasing for $q \in (0, 1/3)$, increasing for $q \in (1/3, 1)$, and attains its minimum of $27/4 = g(1/3)$ at $q = 1/3$. Moreover, $\lim_{q \uparrow 1} g(q) = \lim_{q \downarrow 1} g(q) = \infty$. Recall that $\alpha > 4$. Thus, $2\alpha > 8 > 27/4$, and it therefore follows from (7) that
\( \pi''(1/3) > 0 \). Hence, \( \pi''(q) = 0 \) has exactly two solutions, \( q_1 < q_2 \). Moreover, \( \pi''(q) < 0 \) on \( (0, q_1) \) and \( (q_2, 1) \), and \( \pi''(q) > 0 \) on \( (q_1, q_2) \).

Recall from Lemma 3.1 that \( q^H \) and \( q^L \) are the solutions to \( p'(q) = 0 \), and therefore \( \alpha = \frac{1}{q(1-q)} \) for \( q \in \{q^H, q^L\} \). Hence, \( \pi''(q) = 2\alpha - \frac{1}{q(1-q)^2} = 2\alpha - \frac{\alpha}{1-q^2} \) for \( q \in \{q^H, q^L\} \). By Lemma 3.1, we have \( q^L < 1/2 \) and \( q^H > 1/2 \). So, \( \pi''(q^L) > 0 \) and \( \pi''(q^H) < 0 \). This implies \( q^L \in (q_1, q_2) \) and \( q^H \in (q_2, 1) \), from which (i) now follows.

Next, we prove (ii). For \( q \in (q^L, q^H) \), we have \( p'(q) > 0 \). Therefore, \( \pi'(q) = p'(q)q + p(q) > 0 \) for \( q \in (q^L, q^H) \). We will complete the proof of (ii) by showing that \( \pi'(q) > 0 \) for \( q \in (0, 1/2) \). Because \( \alpha > 4 \) and \( y \geq 0 \), we have from (6) that \( \pi'(q) > 8q - \log(q) + \log(1-q) - \frac{1}{1-q} = f(q) \). Hence, it suffices to establish that \( f(q) > 0 \) for \( q \in (0, 1/2) \). Note that \( f'(q) = 8 - g(q) \) and \( g(1/2) = 8 \). Together with the facts about \( g(q) \) given above, this implies that \( f'(q) = 0 \) has exactly one solution \( \tilde{q} \) on \( (0, 1/2) \) and moreover that solution must lie in \( (0, 1/3) \), where \( g(q) \) is decreasing. We have \( f''(q) = -g'(q) \), so \( \tilde{q} \) must be a local minimum of \( f(q) \). It is now simple to check that \( \tilde{q} = (3 - \sqrt{5})/4 \) and that \( f(\tilde{q}) > 0 \). It follows that \( f(q) > 0 \) for all \( q \in (0, 1/2) \), which proves (ii).

**Proof of Theorem 4.2.** To prove part (i), note that \( \pi/\alpha = \pi(\tilde{q})/\alpha = p(\tilde{q})\tilde{q}/\alpha \). By Lemma 3.1 and Proposition 3.2, we have \( q^H = \frac{1}{2} + \sqrt{\frac{1}{4} - \frac{1}{\alpha}} \) and \( q^H < \tilde{q} < 1 \). It follows that \( q^H \to 1 \) and \( \tilde{q} \to 1 \) as \( \alpha \to \infty \). To complete the proof of part (i), we next show that \( p(\tilde{q})/\alpha \to 1 \). To do so, observe that Lemma 5.2 below and the monotonicity of \( p(q) \) on \( (q^H, 1) \) imply that \( G(\alpha) < p(\tilde{q}) < p(q^H) \) for sufficiently large \( \alpha \) where \( G(\alpha) := y + \alpha - \frac{1}{2} - \log(2\alpha - 1) \). So

\[
\frac{G(\alpha)}{\alpha} < \frac{p(\tilde{q})}{\alpha} < \frac{p(q^H)}{\alpha}.
\]

We have \( G(\alpha)/\alpha \to 1 \). Note that \( 1 - q^H = q^L \) and \( q^L = 1/(\alpha q^H) \). Therefore, by (3),

\[
\frac{p(q^H)}{\alpha} = \frac{y}{\alpha} + q^H + \frac{1}{\alpha} \left[ \log q^L - \log q^H \right] = \frac{y}{\alpha} + q^H - \frac{1}{\alpha} \left[ \log \alpha + 2 \log q^H \right] \to 1.
\]

From (8), we now have \( p(\tilde{q})/\alpha \to 1 \), which completes the proof of part (i).

Next, we turn to part (ii). Lemma 5.4 below establishes that \( \tilde{q} < q^M \) for \( \alpha \) sufficiently large. Theorem 4.1 implies that \( \pi = \pi(q^M) \) for such \( \alpha \). Part (ii) now follows from Lemma 5.3 below.

**Lemma 5.2.** For \( \alpha > \frac{1}{2}(1 + \exp(y - 1)) \) we have \( p(\tilde{q}) > y + \alpha - \frac{1}{2} - \log(2\alpha - 1) \).

**Proof.** Consider \( q^+ = 1 - \frac{1}{2\alpha} \). From (6), we have \( \pi'(q^+) = y - \log(2\alpha - 1) - 1 < 0 \), where the inequality holds for \( \alpha > \frac{1 + \exp(y - 1)}{2} \). The unimodality of \( \pi(q) \) implies \( q^H < \tilde{q} < q^+ \) for such \( \alpha \). The function \( p(q) \) is decreasing on \( (q^H, 1) \) so \( p(\tilde{q}) > p(q^+) = y + \alpha - \frac{1}{2} - \log (2\alpha - 1) \).
Lemma 5.3. \( \bar{\pi}(q^M) \sim \log \alpha \) as \( \alpha \to \infty \).

**Proof.** Recall that \( p(q^M) = p(q^L) \) by definition. So,

\[
\bar{\pi}(q^M) = q^M p(q^L) = q^M \left[ y + \alpha q^L + \log q^H - \log q^L \right] = q^M \left[ y + \frac{1}{q^H} + 2 \log q^H + \log \alpha \right]
\]

where the final equality above uses \( q^L = 1/(\alpha q^H) \). Therefore,

\[
\frac{\bar{\pi}(q^M)}{\log \alpha} = q^M \left[ \frac{y}{\log \alpha} + \frac{1}{q^H \log \alpha} + \frac{2 \log q^H}{\log \alpha} + 1 \right].
\] (9)

Note that \( y/\log \alpha \to 0 \). In addition, \( 1/(q^H \log \alpha) \to 0 \) and \( 2 \log q^H / \log \alpha \to 0 \) because \( q^H \to 1 \). Finally, we also have \( q^M \to 1 \) because \( q^H < q^M < 1 \). In view of (9), this completes the proof. \( \Box \)

**Proof of Theorem 4.3.** To begin, we derive an upper bound on \( q^\dagger \). Recall that \( p(q^\dagger) = p(\tilde{q}) \), so by Lemma 5.2 and the definition of \( p(q) \), we have \( y + \alpha q^\dagger + \log (1/q^\dagger - 1) > y + \alpha - \frac{1}{2} - \log (2\alpha - 1) \) for sufficiently large \( \alpha \). It follows that

\[
\log \left(1/q^\dagger - 1\right) > \alpha - \frac{1}{2} - \log (2\alpha - 1) - \alpha q^\dagger.
\]

Note that \( q^\dagger < q^L = \frac{1}{2} - \sqrt{\frac{1}{4} - \frac{1}{\alpha}} \leq \frac{2}{\alpha} \) because \( (\frac{1}{2} - \frac{2}{\alpha})^2 \leq \frac{1}{4} - \frac{1}{\alpha} \), where the final inequality holds because \( \alpha > 4 \). Thus,

\[
\log \left(1/q^\dagger - 1\right) > \alpha - \frac{5}{2} - \log (2\alpha - 1).
\]

Hence,

\[
1/q^\dagger > \frac{\exp(\alpha - 5/2)}{2\alpha - 1} + 1.
\]

Therefore,

\[
q^\dagger < \left[ 1 + \frac{\exp(\alpha - 5/2)}{2\alpha - 1} \right]^{-1} \leq C \alpha e^{-\alpha}
\]

where \( C = 2e^{5/2} \). Also, \( p(q^H) = y + \alpha q^H + \log(1/q^H - 1) \leq y + \alpha + \log(1/q^H - 1) \leq y + \alpha \) because \( \frac{1}{2} < q^H < 1 \). For \( \alpha \geq y \) we now have \( p(q^H) \leq 2\alpha \). Consequently \( \pi^\dagger = p(\tilde{q})q^\dagger \leq p(q^H)q^\dagger \leq C_2 \alpha^2 e^{-\alpha} \) where \( C_2 = 4e^{5/2} \) for all \( \alpha \) sufficiently large.

To finish the proof, we will next use a similar argument to establish an (asymptotic) lower bound on \( \pi^\dagger \). Let \( q^o = 1 - 1/\alpha \). Then \( \pi^o(q^o) = y - \log(\alpha - 1) + \alpha - 2 > 0 \) for \( \alpha \) sufficiently large. Hence, \( \tilde{q} > q^o \). We also have \( q^H = \frac{1}{2} + \sqrt{\frac{1}{4} - \frac{1}{\alpha}} < q^o \). Thus, \( p(\tilde{q}) < p(q^o) \) because \( p(q) \) is decreasing on \( (q^H, 1) \). Therefore, \( p(q^\dagger) = p(\tilde{q}) < p(q^o) = y + \alpha - 1 - \log (\alpha - 1) \), from which we obtain \( y + \alpha q^\dagger + \log (1/q^\dagger - 1) < y + \alpha - 1 - \log (\alpha - 1) \). For \( B := e/4 \), steps similar to those above now yield

\[
q^\dagger > \left[ 1 + \frac{\exp(\alpha - 1)}{\alpha - 1} \right]^{-1} > \left[ \frac{2 \exp(\alpha - 1)}{\alpha} + \frac{2 \exp(\alpha - 1)}{\alpha} \right]^{-1} = B \alpha e^{-\alpha},
\]

12
Lemma 5.4. Given \( y \), there exist \( \alpha' \), \( \alpha'' \) such that \( \tilde{q} > q^M \) for \( \alpha < \alpha' \) and \( \tilde{q} < q^M \) for \( \alpha > \alpha'' \).

Proof. Let \( \alpha' \) be such that \( q^M = 3/4 \) for \( \alpha = \alpha' \) (see Lemma 5.5 below). By Lemma 5.1, \( \tilde{\pi}(q) \) is unimodal and \( \tilde{q} \) is the unique solution to \( \tilde{\pi}'(q) = 0 \). Thus, to prove \( \tilde{q} > q^M \) for \( \alpha < \alpha' \), it suffices to prove \( \tilde{\pi}'(q^M) > 0 \) for \( \alpha < \alpha' \). By (6), \( \tilde{\pi}'(q^M) > 8q^M + \log(1/q^M - 1) - 1/(1 - q^M) \). It is easy to check that \( 8q + \log(1/q - 1) - 1/(1 - q) > 0 \) for \( q \in (0, 3/4) \). By Lemma 5.5, \( q^M < 3/4 \) for \( \alpha < \alpha' \).

Hence, we have established that \( \tilde{\pi}'(q^M) > 0 \) for \( \alpha < \alpha' \), and therefore \( \tilde{q} > q^M \) for \( \alpha < \alpha' \).

Next we prove the existence of \( \alpha'' \). It is easy to check that \( \tilde{\pi}(q^H) \sim \alpha \). Lemma 5.3 shows that \( \tilde{\pi}(q^M) \sim \log \alpha \). Consequently, \( \tilde{\pi}(q^H) - \tilde{\pi}(q^M) \rightarrow \infty \). So, there exists \( \alpha'' \) such that \( \tilde{\pi}(q^H) > \tilde{\pi}(q^M) \) for \( \alpha > \alpha'' \). Lemma 5.1 implies \( \tilde{\pi}(q) \) increases on \([q^H, \tilde{q}]\). Therefore, \( \tilde{q} < q^M \) for \( \alpha > \alpha'' \).

Lemma 5.5. \( q^M \) is continuous and increasing in \( \alpha \). In addition, there exists \( \alpha \) such that \( q^M = 3/4 \).

Proof. Let \( C(\alpha) := p^L = p(q^L) \). By (3), the derivative of \( C(\alpha) \) with respect to \( \alpha \) is \( C'(\alpha) = 1/2 - \sqrt{1/4 - 1/\alpha} = q^L \). From its definition, \( q^M \) is the unique solution to \( p(q) - C(\alpha) = 0 \) on the domain \( q \in (q^H, 1) \). By the Implicit Function Theorem, \( q^M \) is continuous and differentiable in \( \alpha \).

Differentiating \( p(q^M) - C(\alpha) = 0 \) with respect to \( \alpha \) (and writing \( q_M \) rather than \( q^M \) for readability) gives us \( (\alpha - [q_M(1 - q_M)]^{-1}) q'_M = C'(\alpha) - q_M \). We have \( C'(\alpha) - q_M < 0 \) because \( C'(\alpha) = q^L \) and \( q_M > q^H \). In addition, \( \alpha - [q(1 - q)]^{-1} < 0 \) for \( q \in (q^H, 1) \). Therefore, \( q'_M > 0 \).

We have that \( q_M \uparrow 1 \) as \( \alpha \rightarrow \infty \). Hence, in view of the continuity of \( q_M \), the proof will be complete if we show that there exists \( \alpha \) for which \( q_M \leq 3/4 \). To do so, it suffices to show there exists \( \alpha \) for which \( p(3/4) \leq p(q^L) \). We have \( p(3/4) - p(q^L) = 3\alpha/4 - \log 3 - \alpha q^L - \log(q^H/q^L) \). As \( \alpha \downarrow 4 \), the expression for \( p(3/4) - p(q^L) \) approaches \( 1 - \log 3 < 0 \) because \( q^L \rightarrow 1/2 \) and \( q^H \rightarrow 1/2 \).

It follows that \( p(3/4) < p(q^L) \) for \( \alpha \) sufficiently close to 4.

Acknowledgment

This material is based upon work supported by the National Science Foundation under Grant Number CMMI 1462676.
References


